SEMICONDபCTOR ${ }_{\text {тм }}$

## TMC2068P7C

## Demonstration Board for the TMC22x5y Multistandard Digital Video Decoder

## Features

- Accepts 10 -bit digital composite, YC, or 8 -bit analog composite.
- Outputs 10 -bit digital RGB, D1, or YCBCR
- Locks to studio reference
- R-bus serial interface compatibility
- Fairchild demo board compatibility


## Applications

- Evaluation of TMC22x5y Digital Video Decoder
- Output for TMC2067P7C ADC demo board
- Input for Genesis 10-bit Line Doubler board
- Input for TMC2069P7C DAC demo board
- System Breadboarding


## Description

The TMC2068P7C Demonstration Board showcases the TMC22x5y Digital Video Decoder. When used with a 10-bit A/D front-end, the decoder accepts digitized composite or YC and outputs D1, digital RGB, or $\mathrm{YCBCR}^{2}$. When used without the 10 -bit A/D front-end, the on-board TMC22071A or TMC2072 Genlocking Video Digitizer produces an 8-bit digital CVBS signal which the decoder uses to generate outputs.

## Block Diagram



Rev. 0.9.0

## Functional Description

The TMC2068P7C is designed to demonstrate the performance of the TMC22x5y Digital Video Decoder. For complete descriptions of the TMC22x5y and TMC22071A/ TMC2072, please refer to the Fairchild Semiconductor Data Book. The TMC2068P7C is designed to be used in conjunction with other Fairchild demo boards, namely the TMC2067P7C ADC and TMC2069P7C DAC boards. The 96 pin edge connectors plug easily into each other. When used together, the boards demonstrate a high performance 10 -bit digital video decoding system.

Note: To run the TMC2068P7C using the 10-bit TMC2067P7C input, set E2 to "YSEL", and close JP3. To run the TMC2068P7C as a stand-alone, using the 8 -bit Genlock CVBS data, set E2 to "YSEL" and open JP3.

## TMC22x5y Digital Video Decoder

The TMC2068P7C Decoder Demonstration Board was designed to showcase the TMC22x5y.

The TMC22x5y accepts digitized video input on two 10-bit buses, "YOVER[9:0]" and "COVER[9:0]". Based on the status of its control registers, it then outputs the data to the output edge connector of the board in a variety of formats. Please see Table 1 for a listing of video standards and output formats that are loadable to the control registers. The "FPGA" section of this documentation contains detailed instructions on how to program the TMC22x5y.

After the TMC22x5y control registers have been initially loaded by the FPGA and EPROM, subsequent changes to the control registers may be made through the R-bus interface and Raydemo software.

It is important that the control registers be loaded correctly in order to obtain the desired output. Once the control registers have been set to output the correct data from the TMC 22 x 5 y , then several board switches must also be correctly configured. A bank of switches labeled JP6 allows the user to select between digital RGB and D1 as outputs from the board to the output edge connector. Please see Table 3.

## TMC22071A or TMC2072 Genlocking Video Digitizer

The TMC22071A or TMC2072 Genlocking Video Digitizer accepts analog composite data through a BNC on the top edge of the board. A 20 MHz clock crystal provides the Genlock with an input clock. The TMC22071A or TMC2072 outputs digitized CVBS data, horizontal and vertical syncs, and a 27 MHz clock. The clock is used to drive the Decoder and FPGA. Like the TMC22x5y, the Genlock part must be programmed at startup. Detailed instructions on how to do this are in the "FPGA" section of this documentation.

If the board is run as a stand-alone (i.e. no front-end supplying digital video), the Genlock accepts analog composite through the BNC and generates 8 -bit digital CVBS data as well as horizontal and vertical syncs and a pixel clock.

When a 10-bit front end such as the TMC2067P7C is used to supply digital video to the Decoder, the Genlock still provides horizontal and vertical syncs and a clock to the Decoder and FPGA. The Genlock receives the incoming analog video through either the BNC labeled J 1 , or through the input edge connector. The option to use analog composite from the input edge connector is default selected at programming. In cases where this video may be too noisy, a short coaxial cable should be connected between J 2 on the TMC2067P7C and J1 on the TMC2068P7C. Then the default Genlock register maps must be changed to accept input from the BNC instead of the input edge connector. This may be done by selecting the "VIN1" option for incoming video through the Raydemo software.

## FPGA

An Altera EPF8820ATC144-4 FPGA executes several essential board functions. The FPGA controls initial programming of the Genlock and Decoder, a clamp pulse for the A/D board, a serial interface for the Genlock (unless a TMC2072 is installed), and several other important control signals (please see Figure 1).


Figure 1. FPGA Block Diagram

The Altera 8820 controls the EPROM during Genlock and Decoder register map programming. The FPGA generates serial interface clocks and address information. It also provides the EPROM with addressing for the concurrent parallel interface data output. To program the Decoder and Genlock, the EA2-0 switches must be set to the mode of the incoming analog video (see Table 1.). Verify that switch W, along the bottom edge of the board, is HIGH (in the UP position).
After the W and EA2-0 switches are set correctly, press the RESET button (S2) and the parts will program.

Table 1. TMC2068P7C Incoming Video Standard Selection

| EA2-0 | Input Format | Video <br> Standard | Output <br> Format |
| :---: | :--- | :---: | :---: |
| 000 | (FPGA <br> CONFIGURE) | N/A | N/A |
| 001 | composite | NTSC | YUV |
| 010 | Y/C | NTSC | D1 |
| 011 | composite | PAL | YUV |
| 100 | Y/C | NTSC | YUV |
| 101 | composite | NTSC | D1 |
| 110 | Y/C | PAL | YUV |
| 111 | composite | PAL | D1 |

The FPGA also generates a clamp pulse which is sent back to the A/D board over the 96 way edge connector. The default clamp pulse goes low exactly 199 pixel clock cycles after the horizontal sync pulse (HS) goes low and stays low for exactly 12 pixel clock cycles.

If a TMC22071A is the installed Genlock, the FPGA provides R-bus control of this part by interfacing R-bus data onto the 22071 A parallel port. To perform this function, switch W must be LOW (in the DOWN position). The Raydemo reserved TMC22071A R-bus address is 0000000.

The FPGA control registers may also be written to using the Raydemo software. The Raydemo FPGA R-bus address is 0000001.

Several other control signals are inputs to or outputs of the FPGA. They are briefly described in Table 2. For a more complete description of signals going to or coming from the TMC22x5y and TMC22071A/TMC2072, please refer to the Fairchild Semiconductor Data Book.

Note: At powerup, the FPGA will only configure itself if the EA2-0 switches are all set low. If the board was powered up with the switches in a different position, adjust the EA2-0 switches so that they are all low and press the CONF (S4) button.

Table 2. FPGA Input and Output Signal Descriptions

| Signal Name | Input/Output | Origin/Destination | Description |
| :--- | :--- | :--- | :--- |
| BLANK (DAC) | Output | Output edge <br> connector | Signal supplied to output connector. |
| BUFFER | Output | Decoder | Decoder control register select bit . |
| CLAMP | Output | Input edge <br> connector | FPGA supplied negative-going clamp pulse for the <br> A/D board triggered by HS (horizontal sync) input. |
| CLKSEL | Output | U43 (multiplexer) | Selects either Genlock generated clocks and syncs or <br> externally generated clocks and syncs from the input <br> edge connector. |
| COE10 | Output | Input edge <br> connector | When E20 is set to "CSEL" and E21 is set to "CFPGA" <br> this signal controls enabling of the external "C" data. |
| CONF | Input | S4 (pushbutton <br> labeled "CONF") | Triggers FPGA configuration sequence when pressed <br> then released. |
| COVER[9:0] | Output | Decoder | Decoder 10-bit input data to VIDEO_B[9:0] input pins |
| CREF | Output | Output edge <br> connector | Signal supplied to output connector. |
| CVBS[7:0] | Input | Genlock | Digitized 8-bit Genlock output. |
| D1 | Output | Output edge <br> connector | Signal supplied to output connector. |
| D1ENFS | Output | Output edge <br> connector | Signal supplied to output connector. |
| DA0 | Output | Decoder | Initial programming parallel interface control signal. |
| DA1 | Output | Decoder | Initial programming parallel interface control signal. |

Table 2. FPGA Input and Output Signal Descriptions (continued)

| Signal Name | Input/Output | Origin/Destination | Description |
| :---: | :---: | :---: | :---: |
| DCSB | Output | Decoder | Initial programming parallel interface control signal |
| DECCLK | Input | U43 (multiplexer) | Mux-selected pixel clock (either supplied by Genlock or from input edge connector) |
| $\overline{\text { DRST }}$ | Output | Decoder | Decoder reset control |
| DRW | Output | Decoder | Decoder control signal |
| EPEN | Output | U37 (EPROM) | EPROM enable control |
| FSER | Output | P2 (72 pin header) | Control signal for framestore board |
| FSOE | Output | P2 (72 pin header) | Control signal for framestore board |
| GCSB | Output | Genlock | Initial programming parallel interface control signal |
| GLSDA | Output | Genlock | Genlock control signal |
| GRST | Output | Genlock | Genlock reset control |
| HREF | Output | Output edge connector | Signal supplied to output connector |
| HS | Input | U43 (multiplexer) | Mux-selected negative-going horizontal sync pulse (either supplied by Genlock or from input edge connector) |
| IMASTER/ SLAVE | Input | Input edge connector | Signal which informs the FPGA if the previous board wishes to supply clocks and syncs or not |
| MASTER[1:0] | Output | Decoder | Decoder control select bits |
| NTSC/PAL | Output | Output edge connector | Signal supplied to output connector |
| PGM_IN | Input | Input edge connector | Negative-going reset pulse specific to this board logically ANDed with PGM_START and RESET |
| PGM_OUT | Output | Output edge connector | Negative-going reset pulse for the board connected to the output connector |
| PGM_START | Input | S2 (pushbutton labeled "RESET") | Local signal to reset Genlock and Decoder control registers logically ANDed with PGM_IN and RESET |
| RAO | Output | Genlock | R-bus to parallel interface control signal |
| RCSB | Output | Genlock | R-bus to parallel interface control signal |
| RD0 | Output | Genlock | R-bus to parallel interface control signal |
| RESET | Input/output | Input/Output edge connectors | Universal negative-going reset pulse logically ANDed with PGM_START and PGM_IN (disable universality with JP42) |
| RGB | Output | Output edge connector | Signal supplied to output connector |
| SWW | Input | S1 (switch bank) | R-bus enable bit (low to enable) |
| VREF | Output | Output edge connector | Signal supplied to output connector |
| VS | Input | U43 (multiplexer) | Mux-selected negative-going vertical sync pulse (either supplied by Genlock or from input edge connector) |
| XRS[3:0] | Input | Input edge connector | Externally generated TRS data |

## Quick Setup/Verification for Composite NTSC Input, YUV Output

1. Configure jumpers:

If running with 10-bit front-end, JP3 must be closed (connected)
If running with 8 -bit Genlock CVBS, JP3 must be open (not connected)
If using R-Bus interface, JP1 must be closed (connected)
2. Configure slider-switches (push red slider TOWARD specified marking on board) :

E3Hum Rejection "ON"
E4"PXCK4"
E68"DVS"
E67"DHS"
E26"LDV"
E25"LDV"
E24"GPXCK"
E23"GPXCK"
E21"CON"
E20"COFF"
E2"YSEL"
E1"SETV"
JP6[0:9]all set to "GY"
3. Ensure BNC J1 (VIN1) is connected to composite NTSC signal. This may be done by attaching a scope probe to TP7.
4. Ensure piano-key switch W is in the "HIGH" (up) position.
5. Ensure piano-key switches $\mathrm{EA}_{2-0}, \mathrm{Y}$ are in the "LOW" (down) position.
6. If using R-Bus, ensure R-Bus connector plugged-in and switches T, U, V match desired TMC22x5y SA2-0 serial address.
7. Plug in power-supply connector and apply power. LED's corresponding to applied voltages should lightup. The EPF8820 CONF_DONE pin (attached to H25) should go "HIGH" to signify that the FPGA is correctly programmed. This may be carefully checked with either a scope probe or a DVM.
8. Flip piano-key switch EA0 to the "HIGH" (up) position.
9. Press and release the RESET button (S2). The TMC22071A and TMC22x5y should both be programmed. To verify the TMC22071A is functioning correctly, check for presence of sync pulses, VS (TP67) and HS (TP68). Likewise, to verify the TMC22x5y is functioning correctly, check for presence of DHSYNC (TP5) and DVSYNC (TP6).
10. To utilize R-Bus, switch W must be set "LOW" (down). However, it must be returned to "HIGH" (up) for every reset of the board.

Table 3. TMC2068P7C Switch and Jumper Descriptions

| Switch/Jumper Designator <br> (location on board) | Option | Switch Setting |
| :--- | :--- | :--- |$|$| E1 (bottom middle of board) | Manual control of Decoder <br> SET pin | "SETX" to control with switch X, "SETV " to <br> set to VSYNC pulse |
| :--- | :--- | :--- |
| E2 (lower middle column) | Manual control of Y data <br> through JP3 | when "YSEL" high and JP3 closed, external <br> Y enabled (Genlock CVBS disabbed) <br> when "YSEL" high and JP3 open, external <br> Y disabled (Genlock CVBS enabled) |
| E20 (lowermiddlecolumn) | Manual control of C data | "COFF" to disable, "CSEL" to defer control <br> to E21 |
| E21 (lower middle column) | Select Enabling of C data | "CON" to enable, "CFPGA" to defer control <br> to FPGA |
| E23, E24 (lower middle column) | Clock Multiplexer bypass | "GPXCK" to bypass mux and operate on <br> Genlock PXCK <br> "MUX" to drive clock from selected mux <br> output (E26) |
| E25 (lower middle column) | Select Regular/Inverted <br> LDV Genlock Pixel Clock | "LDV" for regular, "LDV" for inverted |
| E26 (lower middle column) | Select LDV or VSYNC as a <br> source for external clock <br> option (E24) | "LDV" for Genlock pixel clock, <br> "VSYNC" for external VSYNC |

Table 3. TMC2068P7C Switch and Jumper Descriptions (continued)

| Switch/Jumper Designator (location on board) | Option | Switch Setting |
| :---: | :---: | :---: |
| E3 (upper middle of board) | Select Hum Rejection | "ON" for normal operation (If switch is set to "OFF" position, incoming composite signal must have an external DC bias) |
| E4 (middle right column) | Select Regular/Inverted Output Clock | "PXCK4" for regular, "PXCK4" for inverted |
| E67 (middle right column) | Select Regular/Inverted Output HSYNC | "DHS" for regular, "DHS" for inverted |
| E68 (middle right column) | Select Regular/Inverted Output VSYNC | "DVS" for regular, "DVS" for inverted |
| EA0 (bottom right) | Sets MSB of EPROM address | Up to set HIGH, down to set LOW |
| EA1 (bottom right) | Sets 2 ${ }^{\text {nd }}$ to MSB of EPROM address | Up to set HIGH, down to set LOW |
| EA2 (bottom right) | Sets $3^{\text {rd }}$ to MSB of EPROM address | Up to set HIGH, down to set LOW |
| JP1 (top middle) | Enable R-bus serial interface | Closed to enable R-bus, open to disable |
| JP3 (lower middle) | Enable Y input | When E2 set to "YSEL", JP3 is closed to enable Y input, open to disable (closed for 10 -bit front end operation, open to use Genlock 8-bit digitized data) |
| JP42 (middle right) | Enable S2 (pushbutton) as universal board reset to reset every component on TMC2068P7C and all other boards connected through input and output connectors | Closed to enable universal reset open to enable reset to FPGA only |
| JP5 (middle right) | Set D1 input to FPGA | Closed to set low, open to set high |
| JP6 (switch column in lower right) | Select between Digital RGB (e.g. TMC2069P7C) or D1 output (e.g. Genesis line doubler) through the output connector | All set to "GY" (left) for digital RGB All set to "RV" (right) for D1 |
| Q (bottom left) | Sets Genlock SA0 R-bus address if TMC2072 is installed | Up to set HIGH, down to set LOW |
| $R$ (bottom left) | Sets Genlock SA1 R-bus address if TMC2072 is installed | Up to set HIGH, down to set LOW |
| S (bottom left) | Sets Genlock SA2 R-bus address if TMC2072 is installed | Up to set HIGH, down to set LOW |
| T (bottom left) | Sets Decoder SAO R-bus address | Up to set HIGH, down to set LOW |
| U (bottom left) | Sets Decoder SA1 R-bus address | Up to set HIGH, down to set LOW |
| V (bottom left) | Sets Decoder SA2 R-bus address | Up to set HIGH, down to set LOW |
| W (bottom left) | R-bus enable | down to enable R-bus, up to disable |

Table 3. TMC2068P7C Switch and Jumper Descriptions (continued)

| Switch/Jumper Designator <br> (location on board) | Option | Switch Setting |
| :--- | :--- | :--- |
| X (bottom left) | Sets "SETX" signal high or <br> low | Up to set "SETX" HIGH, down to set LOW. <br> Used in conjunction with E1 as a decoder <br> input |
| $Y$ (bottom right) | Factory Test Bit | Set low |

## Power Supply Requirements

The TMC2068P7C power supply connector is on the top edge of the board toward the right side. The TMC2068P7C board alone requires a DC power supply voltage of +5 V . The connectors for $-5 \mathrm{~V},+12 \mathrm{~V}$, and -12 V are also made available as a convenience option to power the TMC2067P7C, TMC2068P7C, and TMC2069P7C through a single connec-
tor on the TMC2068P7C. The TMC2067P7C and TMC2069P7C do have separate connectors which may be used instead.

The +5 V supply provides power and voltage references to the TMC22x5y and TMC22071A/TMC2072, as well as driving TTL logic devices. It is for this reason that a bench power supply with short cable lengths is recommended.

## Schematics

## Preliminary Information



Schematics (continued)

Figure 3. IP_CONN.SCH

Schematics (continued)

## Preliminary Information



Schematics (continued)

ио!ұешлодиן Kıеи!ய!ןəd

Schematics (continued)

## Preliminary Information



Figure 6. Decoder.SCH

Schematics (continued)


ио!ұешлоృиן Kıеи!u!ןəд

Schematics (continued)


Figure 8. Framestore Connector

Schematics (continued)


ио!ңешлодиן Kıеи!ய!ןəd

Schematics (continued)

## Preliminary Information



## INPUT 96 Way Connector (Female) Description and Notes

| Row A |  | Row B |  | Row C |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | $+5 \mathrm{v}$ | 32 | GND | 32 | $+5 \mathrm{v}$ |
| 31 | D1 or R/V [bit 0] | 31 | +5V | 31 | GND |
| 30 | D1 or R/V [bit 1] | 30 | +5V | 30 | PXCK |
| 29 | D1 or R/V [bit 2] | 29 | +5V | 29 | GND |
| 28 | D1 or R/V [bit 3] | 28 | GND | 28 | PCK |
| 27 | D1 or R/V [bit 4] | 27 | Analog Composite/luma | 27 | GND |
| 26 | D1 or R/V [bit 5] | 26 | GND | 26 | CREF |
| 25 | D1 or R/V [bit 6] | 25 | Analog chroma | 25 | GND |
| 24 | D1 or R/V [bit 7] | 24 | XEN | 24 | VSYNC |
| 23 | D1 or R/V [bit 8] | 23 | GND | 23 | HSYNC |
| 22 | D1 or R/V [bit 9] | 22 | XDIR | 22 | HREF |
| 21 | Comp, G/Y, or Luma [bit 0] | 21 | XHSYNC | 21 | VREF |
| 20 | Comp, G/Y, or Luma [bit 1] | 20 | XVSYNC | 20 | ODD IN |
| 19 | Comp, G/Y, or Luma [bit 2] | 19 | XPXCK | 19 | GND |
| 18 | Comp, G/Y, or Luma [bit 3] | 18 | XRS [bit 3] | 18 | NTSC/PAL |
| 17 | Comp, G/Y, or Luma [bit 4] | 17 | XRS [bit 2] | 17 | CLAMP pulse |
| 16 | Comp, G/Y, or Luma [bit 5] | 16 | XRS [bit 1] | 16 | RGB |
| 15 | Comp, G/Y, or Luma [bit 6] | 15 | XRS [bit 0] | 15 |  |
| 14 | Comp, G/Y, or Luma [bit 7] | 14 | GND | 14 |  |
| 13 | Comp, G/Y, or Luma [bit 8] | 13 | -5V | 13 |  |
| 12 | Comp, G/Y, or Luma [bit 9] | 12 | -5V | 12 | LOCK |
| 11 | Chroma or B/U [bit 0] | 11 | -5V | 11 | D1 |
| 10 | Chroma or B/U [bit 1] | 10 | GND | 10 | RESET |
| 9 | Chroma or B/U [bit 2] | 9 | PGM_IN | 9 | SCL |
| 8 | Chroma or B/U [bit 3] | 8 | -12V | 8 | GND |
| 7 | Chroma or B/U [bit 4] | 7 | -12V | 7 | SDA |
| 6 | Chroma or B/U [bit 5] | 6 | IE (input enable) | 6 | OE (output enable) |
| 5 | Chroma or B/U [bit 6] | 5 | GND | 5 | $\overline{\text { BLANK (DAC) }}$ |
| 4 | Chroma or B/U [bit 7] | 4 |  | 4 |  |
| 3 | Chroma or B/U [bit 8] | 3 |  | 3 |  |
| 2 | Chroma or B/U [bit 9] | 2 | +12V | 2 | +12V |
| 1 | GND | 1 | GND | 1 | GND |

## Input Edge Connector Design Notes



Figure 11.

- Boards with different revision letters may not be compatible; damage may occur if they are connected together.
- XPXCK is a two times pixel clock fed BACKWARD
- XHSYNC and XVSYNC are timing reference signals fed BACKWARD
- The MASTER/SLAVE signal states if a board is a MASTER or a SLAVE board. This signal is fed FORWARD.
A MASTER board produces the PXCK, HSYNC, and VSYNC signals, and a SLAVE board expects to receive XPXCK, XHSYNC, XVSYNC, etc .
- XDIR is fed FORWARD and controls in which direction the XRS[3:0] data flows.
- PGM_IN is a negative going pulse, logically ANDed with the onboard program start pulse, for initiating the programming sequence for components on that board. Care must be taken to ensure that multiple devices do not try to drive the RBUS at any given time. Minimum width of PGM_IN is 1uS.
- The RESET pin on the input edge connector should be connected directly to the RESET pin on the output connector.
A link should be used to connect any pulse to the RESET line.
- The MASTER/SLAVE, XDIR, PGM_IN and RESET pins on the input edge connector should be connected to +5 V through a 10k pull up resistor.
- The CLAMP signal is fed BACKWARD from a MASTER to a SLAVE board. The CLAMP signal should not be fed FORWARD.

OUTPUT 96 Way Connector (male) Description and Notes

| Row A |  | Row B |  | Row C |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $+5 \mathrm{v}$ | 1 | GND | 1 | $+5 \mathrm{v}$ |
| 2 | D1 or R/V [bit 0] | 2 | +5V | 2 | GND |
| 3 | D1 or R/V [bit 1] | 3 | +5V | 3 | PXCK |
| 4 | D1 or R/V [bit 2] | 4 | +5V | 4 | GND |
| 5 | D1 or R/V [bit 3] | 5 | GND | 5 | PCK |
| 6 | D1 or R/V [bit 4] | 6 | Analog Composite/luma | 6 | GND |
| 7 | D1 or R/V [bit 5] | 7 | GND | 7 | CREF |
| 8 | D1 or R/V [bit 6] | 8 | Analog chroma | 8 | GND |
| 9 | D1 or R/V [bit 7] | 9 | XEN | 9 | VSYNC |
| 10 | D1 or R/V [bit 8] | 10 | GND | 10 | HSYNC |
| 11 | D1 or R/V [bit 9] | 11 | XDIR | 11 | HREF |
| 12 | Comp, G/Y, or Luma [bit 0] | 12 | XHSYNC | 12 | VREF |
| 13 | Comp, G/Y, or Luma [bit 1] | 13 | $\overline{\text { XVSYNC }}$ | 13 | ODD IN |
| 14 | Comp, G/Y, or Luma [bit 2] | 14 | XPXCK | 14 | GND |
| 15 | Comp, G/Y, or Luma [bit 3] | 15 | XRS [bit 3] | 15 | NTSC/PAL |
| 16 | Comp, G/Y, or Luma [bit 4] | 16 | XRS [bit 2] | 16 | CLAMP pulse |
| 17 | Comp, G/Y, or Luma [bit 5] | 17 | XRS [bit 1] | 17 | RGB |
| 18 | Comp, G/Y, or Luma [bit 6] | 18 | XRS [bit 0] | 18 |  |
| 19 | Comp, G/Y, or Luma [bit 7] | 19 | GND | 19 |  |
| 20 | Comp, G/Y, or Luma [bit 8] | 20 | -5V | 20 |  |
| 21 | Comp, G/Y, or Luma [bit 9] | 21 | -5V | 21 | LOCK |
| 22 | Chroma or B/U [bit 0] | 22 | -5V | 22 | D1 |
| 23 | Chroma or B/U [bit 1] | 23 | GND | 23 | RESET |
| 24 | Chroma or B/U [bit 2] | 24 | PGM_OUT | 24 | SCL |
| 25 | Chroma or B/U [bit 3] | 25 | -12V | 25 | GND |
| 26 | Chroma or B/U [bit 4] | 26 | -12V | 26 | SDA |
| 27 | Chroma or B/U [bit 5] | 27 | IE (input enable) | 27 | OE (output enable) |
| 28 | Chroma or B/U [bit 6] | 28 | GND | 28 | $\overline{\text { BLANK (DAC) }}$ |
| 29 | Chroma or B/U [bit 7] | 29 |  | 29 |  |
| 30 | Chroma or B/U [bit 8] | 30 |  | 30 |  |
| 31 | Chroma or B/U [bit 9] | 31 | +12V | 31 | +12V |
| 32 | GND | 32 | GND | 32 | GND |

## Output Edge Connector Design Notes



Figure 12.

- Boards with different revision letters may not be compatible; damage may occur if they are connected together.
- XPXCK is a two times pixel clock fed BACKWARD
- XHSYNC and XVSYNC are timing reference signals fed BACKWARD
- The MASTER/SLAVE signal states if a board is a MASTER or a SLAVE board. This signal is fed FORWARD.
A MASTER board produces the PXCK, HSYNC, and VSYNC signals, and a SLAVE board expects to receive XPXCK, XHSYNC, XVSYNC, etc .
- XDIR is fed FORWARD and controls in which direction the XRS[3:0] data flows.
- PGM_OUT negative going signal pulse for initiating programming of down stream boards, generated once the devices on the board have been programmed. Care must be taken to ensure that multiple devices do not try to drive the RBUS at any given time. The Minimum width of PGM_OUT is $1 \mu \mathrm{~S}$.
- The RESET pin on the output edge connector should be connected directly to the RESET pin on the input connector.
A link should be used to connect any pulse to the RESET line.
- The MASTER/SLAVE, XDIR, PGM_OUT and RESET pins on the output edge connector should be connected to +5 V through a 10 k pull up resistor.
- The CLAMP signal is fed BACKWARD from a MASTER to a SLAVE board. The CLAMP signal should not be fed FORWARD.

Table 4. TMC2068P7C Parts List

| Item | Qty. | Part Name | Reference Designator | Description |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $\begin{aligned} & \text { Linear Technology LT1004CH- } \\ & 1.235 \end{aligned}$ | CR1 | 1.235V |
| 2 | 1 | Hewlett Packard: hlmp-1600 | CR2, | RED |
| 3 | 1 | Hewlett Packard: hlmp-1601 | CR4 | RED |
| 4 | 4 | MiniReel: 76-4004 | CR3,CR6,CR7, CR8 | 1N4004 |
| 5 | 1 | Hewlett Packard: hlmp-1620 | CR9 | ORANGE |
| 6 | 1 | Hewlett Packard: hlmp-1621 | CR10 | ORANGE |
| 7 | 46 | MiniReel: 605-611 | C1,C2,C6,C7,C8,C9,C10 C15,C19,C23,C25,C26 C27,C28,C29,C30,C31 C32,C33,C34,C35,C36 C37,C38,C39,C40,C41 C42,C43,C44,C45,C46 C47,C48,C51,C52,C53 C54,C115,C117,C118 C119,C120,C121,C122 C123 | 0.1 uF |
| 8 | 4 | MiniReel: 643-822 | C3,C4,C59,C60 | 22 uF/10v |
| 9 | 1 | MiniReel: 605-168 | C5 | 6.8 pF |
| 10 | 1 | MiniReel: 605-315 | C11 | 150pF |
| 11 | 1 | MiniReel: 605-339 | C12 | 390pF |
| 12 | 4 | MiniReel: 645-823 | C13,C17,C21,C113 | 22uF/ 25v |
| 13 | 4 | MiniReel: 641-647 | C14,C18,C22.C114 | 0.47uF/ 25v |
| 14 | 4 | MiniReel: 605-510 | C16,C20,C24,C116 | 0.01uF |
| 15 | 15 | SECMA: 090320102 | $\begin{aligned} & \text { E1,E2,E3,E4,E20,E21,E23E24,E } \\ & \text { 25,E26,E30,E31,E32E67,E68 } \end{aligned}$ | SELECT |
| 16 | 5 | Fair-Rite: 2743019447 | FB1,FB2,FB3,FB4,FB5 | F BEAD |
| 17 | 19 |  | $\begin{aligned} & \mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{H} 10 \\ & \mathrm{H} 11, \mathrm{H} 13, \mathrm{H} 14, \mathrm{H} 16, \mathrm{H} 18 \\ & \mathrm{H} 19, \mathrm{H} 21, \mathrm{H} 23, \mathrm{H} 25, \mathrm{H} 56 \\ & \mathrm{H} 60, \mathrm{H} 86 \end{aligned}$ | PTH |
| 18 | 2 | AMP: 103747-2 | JP1,JP42 | Jumper |
| 19 | 1 | AMP: 103747-2 | JP3 | YON |
| 20 | 1 | BEAU: 870503 BEAU: 871803 | JP4 | POWER6, Terminal block and socket |
| 21 | 1 | AMP: 103747-2 | JP5 | D1EN |
| 22 | 1 | AMP: 103817-8 | JP6 | HDR10X3 |
| 23 | 1 | Amphenol: 31-5431 | J1 | BNC |
| 24 | 1 | MiniReel: 667-210 | L1 | 10 uH 1210 |
| 25 | 1 | Molex: 15-83-0064 | P1 | R-Bus |
| 26 | 1 | AMP: 4-103186-0 | P2 | HDR40X2 (SIMM72) |
| 27 | 1 | AMP: 650461-4 | P3 | EURO96F |
| 28 | 1 | AMP: 650473-5 | P4 | EURO96M |
| 29 | 1 | DALE: CSC10A-01-472 | RN1 | 4.7K |
| 30 | 1 | ROHM: R25XT-68J1R0 | R1 | 1 OHM 1/4W Carbon |


| Item | Qty. | Part Name | Reference Designator | Description |
| :---: | :---: | :---: | :---: | :---: |
| 31 | 6 | MiniReel: 615-510 | $\begin{aligned} & \hline \text { R2,R3,R133,R134,R136 } \\ & \text { R137 } \end{aligned}$ | 10K |
| 32 | 14 | MiniReel: 615-447 | $\begin{aligned} & \text { R4,R5,R6,R7,R8,R9,R10 } \\ & \text { R18,R19,R20,R21,R53 } \\ & \text { R54,R78 } \end{aligned}$ | 4.75K |
| 33 | 3 | MiniReel: 615-275 | R11,R12,R16 | 75 |
| 34 | 1 | MiniReel: 615-822 | R13 | 220 |
| 35 | 1 | MiniReel: 615-844 | R14 | 3.3K |
| 36 | 3 | MiniReel: 615-808 | R130,R131,R132 | 33 |
| 37 | 1 | ALCOSWITCH: ADP-8 | S1 | SW DIP-8 |
| 38 | 1 | ITT Canon:KSC221JB | S2, S4 | RESET, CON |
| 39 | 1 | ALCOSWITCH: ADP-4 | S3 | SW DIP-4 |
| 40 | 19 | Mouser: ME151-203-100 | ```TP1,TP2,TP3,TP4,TP5 TP6,TP7,TP12,TP13,TP14TP15, TP16,TP62,TP63 TP64,TP65,TP66,TP67 TP68``` | TP |
| 41 | 1 | Mouser: ME151-203-100 | TP8 | +5V |
| 42 |  | Mouser: ME151-203-100 | TP9 | -5V |
| 43 | 1 | Mouser: ME151-203-100 | TP10 | +12V |
| 44 | 1 | Mouser: ME151-203-100 | TP11 | -12V |
| 45 | 5 |  | $\begin{aligned} & \text { TP90,TP91,TP92,TP93 } \\ & \text { TP94 } \end{aligned}$ | LOOP |
| 46 | 1 | Fairchild: TMC22153KHC | U1 | TMC22153KHC |
| 47 | 1 | Fairchild: TMC22071AKHC | U2 | $\begin{aligned} & \text { TMC22071AKHC } \\ & \text { (2072KHC)_2 } \end{aligned}$ |
| 48 | 1 | ALTERA: EPF8820A-144-4 | U3 | FPGA, EPF8820A-144-4 |
| 49 | 2 | Motorola: MC74F14D | U4,U8 | 74F14 |
| 50 | 1 | Phillips: 74F841D | U6 | 74F841 |
| 51 | 2 | Phillips: 74F821D | U9,U10 | SN74ACT821 |
| 52 | 1 | AMP: 544223-3 | U37 | EPROM Socket, 32 Pin |
| 53 | 1 | Motorola: MC74F157AD | U43 | 74F157A |
| 54 | 1 | Motorola: MC74F240DW | U77 | 74F240 |
| 55 | 1 | $\begin{aligned} & \text { ABROCON: } \\ & \text { ACH-20.000MHz-C } \end{aligned}$ | Y1 | 20 MHz |

## Related Products

- TMC2067P7C Decoder demonstration board
- TMC2069P7C ADC demonstration board
- TMC2070P7C R-bus interface board
- RayDemo software


## Notes:

## Ordering Information

| Product Number | Temperature <br> Range | Speed <br> Grade | Screening | Package | Package Marking |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TMC2068P7C | $25^{\circ} \mathrm{C}$ | 27 MHz | Commercial | $4 "$ by 5" Printed Circuit Board | TMC2068P7C |

The TMC2070P7C parallel port to R-bus board, interface cable, RayDemo software, and all relevant documentation are included in the TMC2068P7C purchase price.

The TMC2067P7C, TMC2068P7C, TMC2069P7C, TMC2070P7C, cable, software and documentation are available in the TMC2068 Kit.

A schematic database is available in OrCAD ${ }^{\text {rM }}$ format, along with EPROM maps. More information on the FPGA design is also available. Contact the factory.

The TMC2068P7C Demonstration Board, design documentation, and software are provided as a design example for the customers of Fairchild. Fairchild makes no warranties, express, statutory, or implied regarding merchantability or fitness for a particular purpose.

## FCC Compliance

This board is intended for the evaluation of Fairchild products only. This device has not been approved by the Federal Communications Commission (FCC). This device is not and may not be offered for sale or lease or sold or leased until the approval of the FCC has been obtained.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
